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Introduction — Cryptography

Use computations that are easy (polynomial time) for the legitimate user
but hard (exponential time) for an attacker.

= Use secret knowledge (key) that makes computations easy.
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Use computations that are easy (polynomial time) for the legitimate user
but hard (exponential time) for an attacker.

= Use secret knowledge (key) that makes computations easy.

Commonly used hard problems:
» discrete logarithm (DLP),
» factorization,
» codes,
> lattices,

» multivariate polynomial systems,
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Infroduction — NP-hard, NP-complete

NP-Hard

NP-Complete

Complexity
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NP-Hard

NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity
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Threat of quantum computers:

Shor's algorithm makes polynomial time:

> integer factorization
» DLP in finite fields
» DLP on elliptic curves

» DLP in general class groups

/ department of mathematics and computer science
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Threat of quantum computers:

Shor's algorithm makes polynomial time:

> integer factorization
> DLP in finite fields
» DLP on elliptic curves
» DLP in general class groups
Grover's algorithm brings faster simultaneous search in data

» some security loss in symmetric crypto
(block and stream ciphers)

» some security loss in hash functions

Compensate for Grover by doubling key size.

/ department of mathematics and computer science
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The “survivors':

Public-key encryption:
» Lattice-based cryptography (e.g. NTRU, (Ring)-LWE)
» Code-based cryptography (e.g. McEliece, Niederreiter)

Public-key signatures:
» Multivariate-quadratic-equations cryptography (e.g. UOV)
» Hash based cryptography (e.g. Merkle's hash-trees signatures)

For these systems no efficient usage of Shor's algorithm is known.
Grover's algorithm has to be taken into account when choosing key sizes.
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The “survivors':

Public-key encryption:
» Lattice-based cryptography (e.g. NTRU, (Ring)-LWE)
» Code-based cryptography (e.g. McEliece, Niederreiter)

Public-key signatures:
» Multivariate-quadratic-equations cryptography (e.g. UOV)
» Hash based cryptography (e.g. Merkle's hash-trees signatures)

For these systems no efficient usage of Shor's algorithm is known.
Grover's algorithm has to be taken into account when choosing key sizes.
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Underlying problem:

Solving a system of m multivariate polynomial equations in n variables
over Fg is called the MP problem.

T U Technis
Eindh
/ department of mathematics and computer science Oniverei

ty of Technology





Introduction — Multivariate Cryptography

7/43

Underlying problem:

Solving a system of m multivariate polynomial equations in n variables
over Fg is called the MP problem.

5xPxoxg + 17x5x3 + 23x3x5 + 13x1 + 12x +5=0

12X12X23X3 + 15x1x3? + 25x2x§’ +5x31+6x3+12=0
28x1x2x§1 4 14x23x32 + 16x1x3 +32x0 + 7x3 + 10 =0
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Underlying problem:
Solving a system of m multivariate polynomial equations in n variables
over Fg is called the MP problem.

5xixoxs + 17x5x3 + 23x2x5 4+ 13x + 12x0 + 5 = 0
12x2x3x3 + 15x1%35 + 25x0%3 + 5x1 + 6x3 + 12 = 0
28x1xzx§ —+ 14x§’x32 + 16x1x3 +32x0 + 7x3 + 10 =0

4

Hardness:

The MP problem is an NP-complete problem even for multivariate
quadratic systems and g = 2.
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Underlying problem:
Solving a system of m multivariate polynomial equations in n variables
over Fg is called the MP problem.

x3xp +x0x1+x0+x1+1=0
X3x1 +x3x0 +x3 +x1 =0
X3Xp + x3x1 +x3 +x0 =0

4

Hardness:

The MP problem is an NP-complete problem even for multivariate
quadratic systems and g = 2.

\
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For aset f = (f,...,fn) of m quadratic polynomials in n variables
over [y, let f(x) = (f(x),..., fm(x)) € FJ be the solution vector of the
evaluation of f for a vector x € F3.
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Notation:

For aset f = (f,...,fn) of m quadratic polynomials in n variables
over [y, let f(x) = (f(x),..., fm(x)) € FJ be the solution vector of the
evaluation of f for a vector x € F3.

Definition (M Q over F»):

Let MO(F],FT) be the set of all systems of quadratic equations in
n variables and m equations over FF».

We call one element P € MQ(F3,F7") an instance of MQ over F».
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Solvable in NP-time:

The following non-deterministic polynomial-time algorithm solves M Q-F,
for a given system of equations:

1. Guess an assignment A for (xo, ..., xs,—1) € {0,1}".

2. Check if all m equations are satisfied by A.

3. Output A or go to an infinity loop, respectively.
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NP-hardness:
Reduce 3-SAT to M QO-F5.

(bl \4 —'bz Vv b3) AN (bl \4 b2) AN (—'b4) J
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Infroduction — NP-Completeness of MQ

NP-hardness:
Reduce 3-SAT to M QO-F5.

(bl \4 —'b2 Vv b3) AN (bl \4 bz) AN (—'b4) J

Replace all (; v ;) by (I + I; + I];),

replace all ([; v [; v Ig) by (i + l; + Ik + lil; + il + il + li:1k):
(bl+—'b2+b3-|—bl—'b2+b1b3+—'b2b3+b1—'b2b3)A(b1+b2+b1b2)/\(—'b4)
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NP-hardness:
Reduce 3-SAT to M QO-F5.

(bl \4 —'bz Vv b3) AN (bl \4 bz) AN (—'b4) J

Replace all b; by x; and all —b; by (1 — x;):

(Xl = (1 — X2) + X3 + X1(]. — X2) + x1x3 + (]. = X2)X3 + X1(1 — X2)X3) A
(x1 +x2 + x1x2) A (1 — xa)
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NP-hardness
Reduce 3-SAT to M QO-F»

(bl \4 —'bz Vv b3) AN (bl \4 bz) AN (—'b4) J

Construct an equation ¢; : ¢; = 1 for each clause ¢;:

xi+(1—x)+x3+x1(l—x2) +x1x3 + (1 —x2)x3 + x1(1 —x2)x3 =1
x1+x+x1x0 =1
1—X4=].

T U T.n" ov:" .
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Infroduction — NP-Completeness of MQ

NP-hardness
Reduce 3-SAT to M QO-F»

(bl \4 —'bz Vv b3) AN (bl \4 bz) AN (—'b4) J

Expand all terms:

X1X2 + X1X0x3 + Xox3 + X0 = 0
x1x+x1+x+1=0
X4 = 0
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NP-hardness:
Reduce 3-SAT to M QO-F5.

(bl \4 —'b2 Vv b3) AN (bl \4 bz) AN (—'b4) J

lteratively add a new equation for each remaining cubic term:

X1X2 + X5x3 + Xox3 + x0 = 0
x1x+x1+x+1=0
X4=O

X5 = X1X2
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NP-hardness:
Reduce 3-SAT to M QO-F5.

(bl \4 —'b2 Vv b3) AN (bl \4 bz) AN (—'b4) J

Final equation system:

x3x5s +x0x3 +x2 + x5 =0
x1+x+x5+1=0
X4=0

x1xo +x5 =0
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NP-hardness:
Reduce 3-SAT to M QO-F5.

(bl \4 —'b2 Vv b3) AN (bl \4 bz) AN (—'b4) J

Final equation system:

x3x5s +x0x3 +x2 + x5 =0
x1+x+x5+1=0
X4=0

x1xo +x5 =0

3-SAT <po|y MQ'IF2 J
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Infroduction — NP-Completeness of MQ

MQ-F; is NP-complete. I

We showed that MQ-F, € NP and 3-SAT <,y MQ-F>.
Thus, M Q-F> is NP-complete. O

nnnnnnnn
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Cryptosystems — Hashing

Cryptographic hash function:

» Pre-image resistance:
Given a hash h it should be difficult to find any message m such that
h = H(m).

» Second pre-image resistance:
Given an input myg it should be difficult to find another input m;
such that mg # my and H(mg) = H(my).

» Collision resistance:
It should be difficult to find two different messages mg and m; such
that that mg # my and H(mg) = H(my).

ty of Technology
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Cryptosystems — Hashing

quadratic equations f; ... 1,

in k 4+ n variables
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quadratic equations f; ... 1,

in k 4+ n variables

-
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Cryptosystems — Hashing

Problem: Easy to find collisions!
f(m, IV) = f(m', V')
f(m, IV) = f(m + a,IV + b)
f(m,IV) —f(m+a,IV+b) =0
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Cryptosystems — Hashing

Problem: Easy to find collisions!

f(m,IV) = f(m',IV')
f(m,IV) = f(m+ a,IV + b)
f(m,IV) —f(m+a,IV+b) =0

fo(X) = C,1X2X1 + C20X2X0 + C1,0X1X0 + C2X2 + C1X1 + CoXp + C
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Cryptosystems — Hashing

f(m,IV) = f(m',IV')
f(m,IV) = f(m+ a,IV + b)
f(m,IV) —f(m+a,IV+b) =0

fo(X) = C,1X2X1 + C20X2X0 + C1,0X1X0 + C2X2 + C1X1 + CoXp + C
ﬂ)(X) = fo(X I a) = C2,1X2X1 + C2,0X2Xp + C1,0X1X0 + C2X2 + C1X1 + CoXo + C
—(C271(X2 A az)(Xl A a1) + ... C2(X2 A 32) qF ooc gF C)
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Cryptosystems — Hashing

f(m,IV) = f(m',IV')
f(m,IV) = f(m+ a,IV + b)
f(m,IV) —f(m+a,IV+b) =0

(X) C2,1X2X1 + C20X2Xp + C1,0X1X0 + C2X2 + C1X1 + CoXp + €

(X) fo(X + a) = C2,1X2X1 ar C2,0X2X0 + C1,0X1X0 + CoXp + C1X1 + CoXp + C
(C271 Xo + az)(Xl a a1) A o .C2(X2 F 32) qF oo0 SF C)

(X) — ﬁ)(x + a) = C2,1X2X1 + C2,0X2X0 + C1,0X1X0 + CoXo + C1X1 + CoXpg + C
(c2 1(XoX1 + a1xo + asxy + alaz) +...0X0 +Chay +--- + c)

)

Sh Sh

S
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Cryptosystems — Hashing

f(m,IV) = f(m',IV')
f(m,IV) = f(m+ a,IV + b)
f(m,IV) —f(m+a,IV+b) =0

(X) C2,1X2X1 + C20X2Xp + C1,0X1X0 + C2X2 + C1X1 + CoXp + €

(X) fo(X + a) = C2,1X2X1 ar C2,0X2X0 + C1,0X1X0 + CoXp + C1X1 + CoXp + C
(c271 xXo+ax)(xa+a1)+...x+a)+-+ c)

(X) — ﬁ)(x + a) = C2,1X2X1 + C2,0X2X0 + C1,0X1X0 + CoXo + C1X1 + CoXpg + C
(cz 1(XoX1 + a1xo + asxy + alaz) +...0X0 +Chay +--- + c)

)

Sh Sh

S

= Underdefined linear system of k + n variables and n equations! J
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Cryptosystems — Hashing

Example (MQ-HASH):

f:F3th - T
g :Fp— T}

H:(gof)(s1,-..,Sn, m1,...,myg)

MQ-HASH: k = 32, n = 160 and r = 464.
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Cryptosystems — Asymmetric Schemes

Composition of functions with known inverse:

Secretly choose f, g, h with known inverse functions f—1, g1, h~1.
Release F = f o g o h as public key and h™%, g1, f~1 as private key.
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Cryptosystems — Asymmetric Schemes

Composition of functions with known inverse:

Secretly choose f, g, h with known inverse functions f—1, g1, h~1.
Release F = f o g o h as public key and h™%, g1, f~1 as private key.

Example:
Choose f = (f1,...,fy),h = (h1,..., h,) as sets of independent linear
equations and

81 X1,
& x2 + p2(x1),
g(g1,.--,8n) = | &83: x3+ p3(x1,x2), |,

&a: Xp+ p4(X17 °co 7Xn71)

with p; quadratic in xq, ..., x;.
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Cryptosystems — Asymmetric Schemes

x3+x3+1 X1 X2 + X1

Fo Xa + X2 g— X2+ (x1 +1) h— X3 + X2
X4 +x3+x1 | X3 + (xox1 + x2) ' X4 +x +1
X3 + Xo x4 + (x3x1 + x3%0 + x1) Xa + Xo + X1
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Cryptosystems — Asymmetric Schemes

x3+x1+1 X1 X2 + X1

Fo Xa + X2 g— X2+ (x1 +1) h— X3 + X2
X4 +x3+x1 | X3 + (xox1 + x2) ' X4 +x +1
X3 + Xo x4 + (x3x1 + x3%0 + x1) Xa + Xo + X1

X3X2 + X3X1 + Xox1 + X4 + X3 + X2 + X1
X4X3 + Xax1 + X3x0 + Xox1 + x4 + 1
XaX3 + Xax1 + X3x1 + x0 + 1
X3X2 + X3x1 + Xox1 + X4 + X1

F=fogoh=

/ department of mathematics and computer science





Cryptosystems — Asymmetric Schemes

Example (Encryption):

X3X2 + X3X1 + XoX1 + X4 + X3 + X2 + X1
X4X3 + Xax1 + X3x0 + Xox1 + x4 + 1
XaX3 + Xax1 + X3x1 + x0 + 1
X3X2 + X3x1 + Xox1 + X4 + X1

F =

0-0+0-1+0-1+1+0+0+1

1-0+1-14+0-0+0-1+1+1
1-0+1-1+0-1+0+1
0-0+40-14+0-1+1+1

F(170707 1) = = (07 17070)
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x3+1 X1 X2 + X1
_ X4 + Xo _ X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + X2 Xq + (X3X1 + X3X2 +X1) Xgq + Xo + X1
ya+ysty
-1 _ v3sty2+yi+1
vatys+y:+y1+1
+y+l
f71(071a070) = (1707071)
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + Xo X4 + (X3X1 + x3xo + X1) Xq + Xo + X1
X1 1
xo+ (x1 +1) 0
x3 + (xox1 + x2) I )
x4 + (x3x1 + x3x0 + x1) 1
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Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + Xo X4 + (X3X1 + x3xo + X1) Xq + Xo + X1
X1 1
xo+ (x1 +1) 0
x3 + (xox1 + x2) I )
x4 + (x3x1 + x3x0 + x1) 1
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Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + Xo X4 + (X3X1 + x3xo + X1) Xq + Xo + X1
X1 1
x4+ (x1 +1) 0
x3 + (xox1 + x2) I )
x4 + (x3x1 + x3x0 + x1) 1
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + Xo X4 + (X3X1 + x3xo + X1) Xq + Xo + X1
X1 1
xo+(1+1) 0
x3 + (xox1 + x2) I )
x4 + (x3x1 + x3x0 + x1) 1
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x1+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xa + X3 + X1 x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + X2 Xq + (X3X1 + x3xo + X1) Xgq + Xo + X1
X1 1
X2 0
x3 + (xox1 + x2) 0
x4 + (x3x1 + x3x0 + x1) 1
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + Xo X4 + (X3X1 + x3xo + X1) Xq + Xo + X1
X1 1
X2 0
x3+(0-140) 0
x4 + (x3x1 + x3x0 + x1) 1

/ department of mathematics and computer science





Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + X2 Xq + (X3X1 + x3xo + X1) Xgq + Xo + X1
X1 1
X2 _ 0
X3 1o
x4 + (x3x1 + x3x0 + x1) 1
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + X2 xa + (x3x1 + x3x2 + x1) X4 + X2 + X1
X1 1
X2 10
X3 1o
x4+ (0-140-0+1) 1
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + Xo X4 + (X3X1 + x3xo + X1) Xq + Xo + X1
X1 1
X2 _ 0
X3 1o
xg + 1 1
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x31+1 X1 X2 + X1
Fo X4 + Xo g = X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + Xo X4 + (X3X1 + x3xo + X1) Xq + Xo + X1
X1 1
X2 _ 0
x3| |0
X4 0
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Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x3+1 X1 X2 + X1
Fo X4 + Xo _ X2+(X1+1) h— X3 + Xo
Xa + X3 + X1 8 x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + X2 Xq + (X3X1 + x3xo + X1) Xgq + Xo + X1
X1 1
X2 _ 0
X3 0
X4 0
71(1a0705 1) = (1705070)

T U Endnoven
/ department of mathematics and computer science e sity of Technology





Cryptosystems — Asymmetric Schemes

Example (Decryption):

x3+x1+1 X1 X2 + X1
_ X4 + Xo _ X2+(X1+1) h— X3 + Xo
Xs+x3+x1 |’ x3 + (xox1 + x2) ’ Xa + X0 +1
X3 + X2 Xq + (X3X1 + X3X2 +X1) Xgq + Xo + X1
ya+y3+1
h-1 = Yvatysty+1
vaty2+tys+yi+1
Yat+tn
hil(]" 07070) = (170,07 1)

/ department of mathematics and computer science





Cryptosystems — Asymmetric Schemes s

81 X1,
g : X2 + p2(x1),
g(gl,-.-,8n) = | &3: x3 + p3(x1,x2),

g4: Xn+ pa(xt,...,Xn—1)

T U Technis
Eindho
/ department of mathematics and computer science Univers

ity of Technology





Cryptosystems — Asymmetric Schemes s

Attention!

81 X1,
g : X2 + p2(x1),
g(gl,-.-,8n) = | &3: x3 + p3(x1,x2),

g4: Xn+ pa(xt,...,Xn—1)

f ogohis not a hard instance of M Q-TF,
due to the linearity of gy and g»!

T U Technis
Eindh
/ department of mathematics and computer science Oniverei

ty of Technology





Cryptosystems — Asymmetric Schemes s

Attention!

81: X1,
g xo + p2(x1),
g(gl,-.-,8n) = | &3: x3 + p3(x1, x2),

g4: Xn+ pa(xt,...,Xn—1)

fogohisnot a hard instance of M Q-IF»
due to the linearity of gy and g»!

Make composition more complicated; this is ongoing research.

Techn
Eindho
/ department of mathematics and computer science T U/ University of Technology





Cryptosystems — Asymmetric Schemes s

Attention!

81: X1,
g xo + p2(x1),
g(gl,-.-,8n) = | &3: x3 + p3(x1, x2),

g4: Xn+ pa(xt,...,Xn—1)

fogohisnot a hard instance of M Q-IF»
due to the linearity of gy and g»!

Make composition more complicated; this is ongoing research.

All asymmetric M O-F, schemes that have been prosed so fare
have been broken!

Techn
Eindho
/ department of mathematics and computer science T U/ University of Technology





Cryptosystems — Signatures

Basic scheme:

» Signing: Encrypt message hash with private key.

» Verification: Decrypt signature with public key and compare to
message hash.

/ department of mathematics and computer science





Cryptosystems — Signatures

Basic scheme:

» Signing: Encrypt message hash with private key.

» Verification: Decrypt signature with public key and compare to
message hash.

No secure multivariate public key system — no secure signature scheme...

/ department of mathematics and computer science





Cryptosystems — Signatures

Basic scheme:

» Signing: Encrypt message hash with private key.

» Verification: Decrypt signature with public key and compare to
message hash.

No secure multivariate public key system — no secure signature scheme...
Wrong!

There actually are secure multivariate signature schemes that are not
based on public key encryption.

T U Technische Universiteit
Ei
/ department of mathematics and computer science e Univers chnology





Cryptosystems — Signatures

Example (Oil and Vinegar):

Private key:
Xe + X3 + 1

X X: X
;5-: ;3-: 11 XeX1 T+ X5Xo + XgXo + XoX1 + X4 + X3
f =

xit+x+1 [87 Xax1 + x3x2 +xa +x1 + 1
X4+X2+1 X6X3 + X5X3 + X3X2 + Xg + X5 + X1 + 1
3 2

X5 + X1

v,

T U Technische Universiteit
Eindhoven
/ department of mathematics and computer science e

University of Technology





Cryptosystems — Signatures

Example (Oil and Vinegar):

Private key:
Xe + X3 + 1

Xe + X3 + X1
XeX1 T X5Xo + XgXo + XoX1 + Xq4 + X3
x5+ x3 + 1 6 S

xit+x+1 [87 Xax1 + x3x2 +xa +x1 + 1
X4+X2+1 X6X3 + X5X3 + X3X2 + Xg + X5 + X1 + 1
3 2

f:

X5 + X1

Public key: go f =
XeX5 + XgXa4 + XeX3 + X5X3 + XaX3 + XaX1 + X3X1 + X4 + X2
XeX5 + XeXa + XeX3 + XeXo + X5X3 + XgX1 + Xq4X3 + X3Xo + X3X1 + Xg + X1
XeX5 + XeX3 + X5X3 + X5Xo + X3Xo + X3 + X1

v,

T U Technische Universiteit
Eindhoven
/ department of mathematics and computer science e

University of Technology





Cryptosystems — Signatures

Example (Oil and Vinegar):

Private key:
X6 +X3+1
Xe + X3 + X1
x5 +x3+1
f = xatx+l |87
x3+xo+1
X5 + X1

XeX1 T X5Xo + XgXo + XoX1 + Xq4 + X3
XaX1 +X3X%0 + x4 +x1 +1
XeX3 + X5X3 + X3X0 + X6 + X5 + x1 + 1

Public key: go f =
XeX5 + XgXa4 + XeX3 + X5X3 + XaX3 + XaX1 + X3X1 + X4 + X2
XeX5 + XeXa + XeX3 + XeXo + X5X3 + XgX1 + Xq4X3 + X3Xo + X3X1 + Xg + X1
XpX5 + X6X3 + X5X3 + X5X2 + X3X2 + X3 + X1
» Sign hash h: s = f 1o g 1(h).
» Verify s: ' = gof(s); i =h?

Technische Universiteit
. , TU /e G
/ department of mathematics and computer science University of Technology





Cryptosystems — Signatures

Example (Signing):

X6 +x3+1
X + X3 + X
6 3 . XeX1 + XsX2 + XaXo + XoX1 + X4 + X3
X5 +x3+1
f = o 1 g = XaX1 +x3x0 + x5 +x1 + 1
4 2
X6X3 + X5x3 + X3xo0 + X6 + x5 + x1 + 1
s 4 s 1l 6X3 5X3 3X2 6 5 1
X5 + X1

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Signing):

Oil variables: xg, x5, x4; Vinegar variables: x3, x0, x1.

X6 +x3+1
X + X3 + X
6 3 . XeX1 + X5Xo + XaXp + XoX1 + X4 + X3
X5 +x3+1
f = o 1 g = XaX1 + x3x0 + x5 + x1 + 1
4 2
X6X3 + X5X3 + X3xo0 + Xg + x5 + x1 + 1
s 4 s 1l 6X3 5X3 3X2 6 5 1
X5 + X1

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Signing):

Oil variables: xg, x5, x4; Vinegar variables: x3, x0, x1.

X6 +x3+1
X + X3 + X
6 3 . XeX1 + X5Xo + XaXp + XoX1 + X4 + X3
X5 +x3+1
f = 21 55 b il g = XaX1 + x3x0 + x5 + x1 + 1
X6X3 + X5X3 + X3xo0 + Xg + x5 + x1 + 1
s 4 s 1l 6X3 5X3 3X2 6 5 1
X5 + X1

Randomly choose x3, x2, x1, e.g., x3 =0,x2 = 1,x3 = 0:

Oxg +1xs +1x4 +1-0+x2+0
g = Ox4 +0-1+x4+0+1
Ox6 +0xs +0-1+x5+x5 +0+1

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Signing):

Oil variables: xg, x5, x4; Vinegar variables: x3, x0, x1.

X6 +x3+1
X + X3 + X
6 3 . XeX1 + X5Xo + XaXp + XoX1 + X4 + X3
X5 +x3+1
f = 21 55 b il g = XaX1 + x3x0 + x5 + x1 + 1
X6X3 + X5X3 + X3xo0 + Xg + x5 + x1 + 1
s 4 s 1l 6X3 5X3 3X2 6 5 1
X5 + X1

Randomly choose x3, x2, x1, e.g., x3 =0,x2 = 1,x3 = 0:

Oxg +1xs +1x4 +1-04+ x4 +0 X5
g = Oxg +0-1+x+0+1 = xz +1
Ox6 +0xs +0-1+x5+x5 +0+1 Xe + x5 + 1

Te:
/ department of mathematics and computer science T U/e o





Cryptosystems — Signatures

Example (Signing):

Oil variables: xg, x5, x4; Vinegar variables: x3, x0, x1.

Xe +x3+1
X + X3 + X
;i;ill XeX1 + X5X0 + XaXo + XoX1 + X4 + X3
5 3
f= xq + x4+ 1 8 = Xax1 +Xx3X0 + x4 +x1 + 1
X6X3 + X5X3 + X3X2 + X + x5 + x1 + 1
X34 x0 + 1 6X3 5X3 3X2 6 5 1
X5 + X1
Sign h = (1,1,0): x5 =1

xs+1=1
X6+ x5 +1 =0

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Signing):

Oil variables: xg, x5, x4; Vinegar variables: x3, x0, x1.

X6 +x3+1
X6 + X3 + X
g : ! XpX1 + X5X2 + XaXo + XoX1 + X4 + X3
X5 +x3+1
f = 21 55 b il g = XaX1 + x3x0 + x5 + x1 + 1
XeX3 + X5x3 + Xx3X0 + X6 + X5 + x1 + 1
i 6X3 5X3 3X2 6 5 1
X5 + X1
Sign h = (1,1,0): x5 =1
X4:0
Xxg =0

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Signing):

Oil variables: xg, x5, x4; Vinegar variables: x3, x0, x1.

X6 +x3+1
X6 + X3 + X
g : ! XpX1 + X5X2 + XaXo + XoX1 + X4 + X3
X5 +x3+1
f = 21 55 b il g = XaX1 + x3x0 + x5 + x1 + 1
XeX3 + X5x3 + Xx3X0 + X6 + X5 + x1 + 1
i 6X3 5X3 3X2 6 5 1
X5 + X1
Sign h = (1,1,0): x5 =1
X4:0
Xxg =0

g *(1,1,0) = (0,1,0,0,1,0)

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Signing):
£7%(1,1,0)=(0,1,0,0,1,0)

Xe +x3+ 1
X6 + X3 + X1
X5 +x3+1
Xa+x0+1 |’
X3 +xp +1
X5 + X1

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Signing):
£7%(1,1,0)=(0,1,0,0,1,0)

Xe +x3+ 1
X6 + X3 + X1
X5 +x3+1 F~1 _
Xa+x0+1 |’
X3 +xp +1
X5 + X1

Xp+x3+1
Xe +X5+x3+x0+x1 +1
X6 + X3 + X2 + X1
Xe + X5 + X4 + X3+ X2 + X1
X6 +x0+x1+1
X6 +x3+x0+1

/ department of mathematics and computer science






Cryptosystems — Signatures

Example (Signing):
£7%(1,1,0)=(0,1,0,0,1,0)

Xe +x3+ 1 xo+x1+1
X6 + X3 + X1 Xe +X5+x3+x0+x1 +1
Fo X5 +x3+1 1 X6 + X3 + X2 + X1
Xa+x0+1 |’ X6+ X5+ x4+ x3+x0 + X1
x3+x +1 X6 +x0+x1+1
X5 + X1 X6 +x3+x0+1

f~1(0,1,0,0,1,0) = (0,0,0,1,1,0)

indho
/ department of mathematics and computer science T U/e University of Technology





Cryptosystems — Signatures

Example (Signing):
£7%(1,1,0)=(0,1,0,0,1,0)

Xe +x3+ 1 xo+x1+1
X6 + X3 + X1 Xe +X5+x3+x0+x1 +1
Fo X5 +x3+1 1 X6 + X3 + X2 + X1
Xa+x0+1 |’ X6+ X5+ x4+ x3+x0 + X1
x3+x +1 X6 +x0+x1+1
X5 + X1 X6 +x3+x0+1

f~1(0,1,0,0,1,0) = (0,0,0,1,1,0)

S = fﬁlgil(la 170) = (07 0,0,1, 170)

/ department of mathematics and computer science





Cryptosystems — Signatures

Example (Verification):
h=(1,1,0),s = (0,0,0,1,1,0)

TU Technische Un
/ department of mathematics and computer science e ik W?y" f Technology





Cryptosystems — Signatures

Example (Verification):
h=(1,1,0),s = (0,0,0,1,1,0)

XeX5 + XeX4 + XeX3 + X5X3 + X4X3 + XaX1 + X3X1 + X4 + X2
XoX5 + XgXa + XeX3 + XeXo + X5X3 + X5 X1 + XaX3 + X3Xo + X3X1 + Xg + X1
XeX5 + XgX3 + X5X3 + X5X2 + X3Xo + X3 + X1

Technische Universiteit
. . TU e Eindhoven
/ department of mathematics and computer science University of Technology





Cryptosystems — Signatures

Example (Verification):
h=(1,1,0),s = (0,0,0,1,1,0)

XeX5 + XeX4 + XeX3 + X5X3 + X4X3 + XaX1 + X3X1 + X4 + X2
XoX5 + XgXa + XeX3 + XeXo + X5X3 + X5 X1 + XaX3 + X3Xo + X3X1 + Xg + X1
XeX5 + XgX3 + X5X3 + X5X2 + X3Xo + X3 + X1

h =g0of(0,0,0,1,1,0) = (1,1,0)

Technische Universiteit
. . TU e Eindhoven
/ department of mathematics and computer science University of Technology





Cryptosystems — Signatures

Public key encryption scheme?

Oil and Vinegar can not be used as public key encryption scheme due to
the randomness of the vinegar variables.

T U Technische Ui
Eindh
/ department of mathematics and computer science Univel chnol





Cryptosystems — Signatures

Public key encryption scheme?

Oil and Vinegar can not be used as public key encryption scheme due to
the randomness of the vinegar variables.

Oil and Vinegar is broken! ]

/ department of mathematics and computer science





Cryptosystems — Signatures

Public key encryption scheme?

Oil and Vinegar can not be used as public key encryption scheme due to
the randomness of the vinegar variables.

Oil and Vinegar is broken! ]

There are variations of Oil and Vinegar, e.g., Unbalanced Oil and Vinegar
(UOB), that are (not yet) broken. J

TU/e i
indhor
/ department of mathematics and computer science Universi

ty of Technology





Cryptosystems — Symmetric Schemes

Pre-process symmetric key and IV to obtain initial state s_;.

Technische Universiteit
Eindhoven
University of Technology

/ department of mathematics and computer science
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Cryptosystems — Symmetric Schemes
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Cryptosystems — Symmetric Schemes

Emdnoven
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Cryptosystems — Symmetric Schemes

Easy to obtain key stream with a single known plain text block!

/ department of mathematics and computer science





Cryptosystems — Symmetric Schemes

Pre-process symmetric key and IV to obtain initial state s_1.

s.1

*

50

]

Technische Universiteit
Eindhoven
University of Technology

/ department of mathematics and computer science






Cryptosystems — Symmetric Schemes

/ department of mathematics and computer science





Cryptosystems — Symmetric Schemes

Emdnoven
/ department of mathematics and computer science B & J & uniersi ity of Technology






Cryptosystems — Symmetric Schemes
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Cryptosystems — Symmetric Schemes

QUAD stream cipher

Provable securel

T U T.n" .,v:" .
/ department of mathematics and computer science e rsity of Technology





Cryptosystems — Symmetric Schemes

QUAD stream cipher

“Provable secure!”

Suggested parameters QUAD(256,20,20) have been broken!

TU Technische Un
/ department of mathematics and computer science e ik W?y" f Technology





Cryptosystems — Symmetric Schemes

QUAD stream cipher

“Provable secure!”
Suggested parameters QUAD(256,20,20) have been broken!

Parameters that are still considered secure:
QUAD(2,160,160), QUAD(2,256,256), QUAD(2,350,350), . ..

T U T.n" .,v:" .
/ department of mathematics and computer science e rsity of Technology





System Solving

Algebraic Cryptanalysis:

Obtain a system of multivariate polynomial equations with the secret
among the variables.

» Naturally breaks multivariate crypto schemes,
» does not break AES as first advertised,
» but does break, e.g., KeelLoq.

Technische Universiteit
. . T U e Eindhoven
/ department of mathematics and computer science University of Technology





System Solving — Grobner Bases

X3X2 + X3X1 + XoX1 + X4 + X3 + X2 + X1
X4X3 + Xax1 + X3X0 + Xox1 + x4 + 1
XgX3 + Xgx1 + X3x1 +x2 + 1
X3X2 + X3X1 + XoX1 + X4 + X1

F =

Find x for F(x) = (0,1,0,0).

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 + Xo0x1 + X4 +x3+x0+x1 =0
XaX3 + Xgx1 +X3X0 +x0x1 + x4 +1 =1
XaX3 +X4X1 +x3x1 +x +1 =0

X3Xo + X3x1 + Xox1 + x4 +x1 =0

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 + Xo0x1 + X4 +x3+x0+x1 =0
XaX3 + X4x1 +X3%0 +X0x1 + x4 +1 =1
XaX3 +X4X1 +x3x1 +x +1 =0

X3Xo + X3x1 + Xox1 + x4 +x1 =0

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 + Xo0x1 + X4 +x3+x0+x1 =0
XaX3 + XgX1 + X3X0 + Xox1 + X4 = 0
XaX3 +X4X1 +x3x1 +x +1 =0

X3Xo + X3x1 + Xox1 + x4 +x1 =0

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 +XoX1 + X4 + X3+ X0 +x1 =0 (1)
X4X3 + Xax1 + X3Xo + xox1 + x4 = 0 (2)

Xax3 +Xax1 +x3x1 +x0 +1=0 (3)

X3Xo + X3x1 + XoX1 + x4 +x1 =0 (4)

3% +x3x1 +xox1+xa +x0+1=0  (2)+(3) = (5)

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 +XoX1 + X4 + X3+ X0 +x1 =0 (1)
X4X3 + Xax1 + X3Xo + xox1 + x4 = 0 (2)

Xax3 +Xax1 +x3x1 +x0 +1=0 (3)

X3Xo + X3x1 + XoX1 + x4 +x1 =0 (4)

3% +x3x1 +xox1+xa +x0+1=0  (2)+(3) = (5)
xx+x1+1=0 (4)+(5) = (6)

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 +XoX1 + X4 + X3+ X0 +x1 =0 (1)
X4X3 + Xax1 + X3Xo + xox1 + x4 = 0 (2)

Xax3 +Xax1 +x3x1 +x0 +1=0 (3)

X3Xo + X3x1 + XoX1 + x4 +x1 =0 (4)

3% +x3x1 +xox1+xa +x0+1=0  (2)+(3) = (5)
xx+x1+1=0 (4)+(5) = (6)

x3+x=0 (1)+(4) = (7)

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 +XoX1 + X4 + X3+ X0 +x1 =0 (1)
X4X3 + Xax1 + X3Xo + xox1 + x4 = 0 (2)

Xax3 +Xax1 +x3x1 +x0 +1=0 (3)

X3Xo + X3x1 + XoX1 + x4 +x1 =0 (4)

3% +x3x1 +xox1+xa +x0+1=0  (2)+(3) = (5)
xx+x1+1=0 (4)+(5) = (6)

x3+x=0 (1)+4) = (7)

x3x0x1 +Xax1 + x3%0 +xox1 + x4 +x3 =0 x3(1) +(2) = (8)

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 +XoX1 + X4 + X3+ X0 +x1 =0 (1)
X4X3 + Xax1 + X3Xo + xox1 + x4 = 0 (2)

Xax3 +Xax1 +x3x1 +x0 +1=0 (3)

X3X2 + Xx3x1 + Xox1 + X4 +x1 = 0 (4)

x3xp +x3x1 +xox1 +xa+x2+1=0  (2)+(3) = (5)
xx+x1+1=0 (4)+(5) = (6)

x3+x=0 (1)+(4) = (7)

X3XoX1 + XgX1 + X3Xo + Xox1 + x4 + x3 =0 x3(1) + (2) = (8)
X3XoX1 +xax1 +x3x0 +x3x1 +x +1=0  x3(4)+ (3) = (9)

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 +XoX1 + X4 + X3+ X0 +x1 =0 (1)
X4X3 + Xax1 + X3Xo + xox1 + x4 = 0 (2)

Xax3 +Xax1 +x3x1 +x0 +1=0 (3)

X3X2 + Xx3x1 + Xox1 + X4 +x1 = 0 (4)

x3xp +x3x1 +xox1 +xa+x2+1=0  (2)+(3) = (5)
xx+x1+1=0 (4)+(5) = (6)

x3+x=0 (1)+(4) = (7)

X3XoX1 + XgX1 + X3Xo + Xox1 + x4 + x3 =0 x3(1) + (2) = (8)
X3XoX1 +xax1 +x3x0 +x3x1 +x +1=0  x3(4)+ (3) = (9)
X3X1 +Xox1 + X4 +x3+x+1=0 (8)+(9) = (10)

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 +XoX1 + X4 + X3+ X0 +x1 =0 (1)
X4X3 + Xax1 + X3Xo + xox1 + x4 = 0 (2)

Xax3 +Xax1 +x3x1 +x0 +1=0 (3)

X3X2 + Xx3x1 + Xox1 + X4 +x1 = 0 (4)

3% +x3x1 +xox1+xa +x0+1=0  (2)+(3) = (5)
xx+x1+1=0 (4)+(5) = (6)

x3+x=0 (1)+(4) = (7)

X3XoX1 + XgX1 + X3Xo + Xox1 + x4 + x3 =0 x3(1) + (2) = (8)
X3XoX1 +xax1 +x3x0 +x3x1 +x +1=0  x3(4)+ (3) = (9)
X3X1 +Xox1 + X4 +x3+x+1=0 (8)+(9) = (10)

x4 +x3+x+1=0 x(7)+(10) = (11)

/ department of mathematics and computer science





System Solving — Grobner Bases

X3Xo + X3X1 + Xo0x1 + X4 +x3+x0+x1 =0
XaX3 + XgX1 + X3X0 + Xox1 + X4 = 0

XaX3 +X4X1 +x3x1 +x +1 =0

X3Xo + X3x1 + Xox1 + x4 +x1 =0
X3Xp + X3X1 +Xox1 + X4 +x +1=0
x2+x3+1=0

x3+x =0

X3XoX1 + XgX1 + X3X0 + Xox1 + X3 +x3 =0
X3XoX1 + Xax1 +X3%0 + x3x1 +x0 +1 =0
X3X1 +Xox1 + X4 +x3+x+1=0

X4 +x3+x+1=0

x4 +1=0

N

~N 2 00w =N
~— o~ Y~ — ~— ~—
&

SRR R

+ =

/ department of mathematics and computer science






System Solving — Grobner Bases

X3Xo + X3X1 + Xo0x1 + X4 +x3+x0+x1 =0
XaX3 + XgX1 + X3X0 + Xox1 + X4 = 0

XaX3 +X4X1 +x3x1 +x +1 =0

X3Xo + X3x1 + Xox1 + x4 +x1 =0
X3Xp + X3X1 +Xox1 + X4 +x +1=0
x2+x3+1=0

x3+x =0

X3XoX1 + XgX1 + X3X0 + Xox1 + X3 +x3 =0
X3XoX1 + Xax1 +X3%0 + x3x1 +x0 +1 =0
X3X1 +Xox1 + X4 +x3+x+1=0

X4 +x3+x+1=0

X4=1

N

~N 2 00w =N
~— o~ Y~ — ~— ~—
&

SRR R

+ =
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System Solving — Grobner Bases

31/43

X3Xo + Xx3x1 + XoxX1 + x4 + X3 +x0 +x1 =0 (1)
XaX3 + XgX1 + X3X20 + X0x1 + x4 = 0 (2)

X4x3 +Xax1 +x3x1 +x0+1=0 (3)

X3Xo + X3X1 + Xox1 + X4 +x1 =0 (4)
x2+x1+1=0 (6)

x3+x =0 (7)

xs =1 (12)
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System Solving — Grobner Bases

31/43

X3Xo + Xx3x1 + XoxX1 + x4 + X3 +x0 +x1 =0 (1)
XaX3 + XgX1 + X3X20 + X0x1 + x4 = 0 (2)

X4x3 +Xax1 +x3x1 +x0+1=0 (3)

X3Xo + X3X1 + Xox1 + X4 +x1 =0 (4)
x2+x1+1=0 (6)

x3+x =0 (7)

xa =1 (12)

Xgx3X1 + xax3 +x0x1 + x4 +x3+x1 =0 x3(3) +(4) = (13)
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System Solving — Grobner Bases

31/43

X3Xo + Xx3x1 + XoxX1 + x4 + X3 +x0 +x1 =0 (1)

XaX3 + XgX1 + X3X20 + X0x1 + x4 = 0 (2)

X4x3 +Xax1 +x3x1 +x0+1=0 (3)

X3Xo + X3X1 + Xox1 + X4 +x1 =0 (4)

xXo+x1+1= (6)

x3+x =0 (7)

xs =1 (12)

Xgx3X1 + xax3 +x0x1 + x4 +x3+x1 =0 x3(3) +(4) = (13)

xaxaxy + x3xox1 + X3x1 Fxox1 +xa +xs+x2+x1 =0 (1) +x3(2) = (14)
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System Solving — Grobner Bases

31/43

X3Xo + Xx3x1 + XoxX1 + x4 + X3 +x0 +x1 =0 (1)

XaX3 + XgX1 + X3X20 + X0x1 + x4 = 0 (2)

X4x3 +Xax1 +x3x1 +x0+1=0 (3)

X3Xo + X3X1 + Xox1 + X4 +x1 =0 (4)

x2+x1+1=0 (6)

x3+x =0 (7)

xs =1 (12)

Xgx3X1 + xax3 +x0x1 + x4 +x3+x1 =0 x3(3) +(4) = (13)

XgX3X1 + X3XoX1 + X3x1 +X0x1 + X4 +x3+x0 +x1 =0 (1) +x3(2) = (14)
x2=0  (14) + (13) + (9) + xa(7) + xa(6) + x2(7) + (12) = (15)
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System Solving — Grobner Bases
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X3Xo + Xx3x1 + XoxX1 + x4 + X3 +x0 +x1 =0 (1)

XaX3 + XgX1 + X3X20 + X0x1 + x4 = 0 (2)

X4x3 +Xax1 +x3x1 +x0+1=0 (3)

X3Xo + X3X1 + Xox1 + X4 +x1 =0 (4)

x2+x1+1=0 (6)

x3+x =0 (7)

xs =1 (12)

Xgx3X1 + xax3 +x0x1 + x4 +x3+x1 =0 x3(3) +(4) = (13)

XgX3X1 + X3XoX1 + X3x1 +X0x1 + X4 +x3+x0 +x1 =0 (1) +x3(2) = (14)
x2=0  (14) + (13) + (9) + xa(7) + xa(6) + x2(7) + (12) = (15)
x3=0 (7) + (15) = (16)
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System Solving — Grobner Bases
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X3Xo + X3X1 +X0x1 + X4 +Xx3 +x0 +x1 =0
XaX3 + XgX1 + X3X2 + Xox1 + X4 = 0
XaX3 + X4x1 +x3x1 +x+1=0
X3Xo + x3x1 + Xox1 + x4 +x1 =0
X +x1+1=0
x3+x =0
xp =1
Xgx3X1 + Xax3 +x0x1 + x4 +x3+x1 =0 x3(3) + (4) =

XgX3X1 + X3XoX1 + X3x1 +X0x1 + X4 +x3+x0 +x1 =0 (1) +x3(2) =

xo =0 (14) + (13) + (9) + xa(7) + x4(6) + x2(7) + (12) = (15
x3=0 (7)+(15) = (16
xp =1 (6) + (15) = (
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System Solving — Grobner Bases
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X3Xo + X3X1 +X0x1 + X4 +Xx3 +x0 +x1 =0
XaX3 + XgX1 + X3X2 + Xox1 + X4 = 0
XaX3 + X4x1 +x3x1 +x+1=0
X3Xo + x3x1 + Xox1 + x4 +x1 =0
X +x1+1=0
x3+x =0
Xy =1
Xgx3X1 + Xax3 +x0x1 + x4 +x3+x1 =0 x3(3) + (4) =

XgX3X1 + X3XoX1 + X3x1 +X0x1 + X4 +x3+x0 +x1 =0 (1) +x3(2) =

xo =0 (14) + (13) + (9) + xa(7) + x4(6) + x2(7) + (12) = (15
x3=0 (7)+(15) = (16
xp =1 (6) + (15) = (
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System Solving — Grobner Bases

Algorithm due to Buchberger:

» Transform set of equations to a Grobner basis; obtain solution of the
system from the final representation.

» During computation, the maximum degree increases to D > 2.

» There are several improvements of Buchbergers algorithm, e.g.,
Faugére's F4 and F5 (implemented, e.g., in Magma).

Technische Universiteit
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System Solving — Extended Linearization

The XL algorithm

» XL is an acronym for extended linearization:

» extend a quadratic system by multiplying with appropriate monomials,
> linearize by treating each monomial as an independent variable,
» solve the linearized system.

» Special case of Grébner basis algorithms.
» First suggested by Lazard (1983).
» Reinvented by Courtois, Klimov, Patarin, and Shamir (2000).

» More “easy” to parallelize compared to Grobner basis solvers.

Eil
u
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System Solving — Extended Linearization

Basic idea:

For b e N denote by x® the monomial xx2 ... xn and by

|b| = by + by + - - - + by, the total degree of xb.

given: finite field K = F,
system A of m multivariate quadratic equations:
61 Zfz =RLL =€m=0, f,‘EK[X]_,Xg,...,X,-,]
choose:  operational degree D € N
extend:  system A to the system
RP) = {xbt; =0:|b| <D —-2,(; € A}
linearize:  consider x?, d < D a new variable, obtain linear system M
solve: linear system M
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System Solving — Extended Linearization

Basic idea:

For b e N denote by x® the monomial xx2 ... xn and by

|b| = by + by + - - - + by, the total degree of xb.

given: finite field K = F,
system A of m multivariate quadratic equations:
61 Zfz =RLL =€m=0, f,‘EK[X]_,Xg,...,X,-,]
choose:  operational degree D € N How?
extend:  system A to the system
RP) = {xbt; =0:|b| <D —-2,¢; € A}
linearize:  consider x?, d < D a new variable, obtain linear system M
solve: linear system M

/ department of mathematics and computer science





System Solving — Extended Linearization

34/43

For b e N denote by x® the monomial xx2 ... xn and by

|b| = by + by + - - - + by, the total degree of xb.

given: finite field K = F,
system A of m multivariate quadratic equations:
61 252 =RLL =€m=0, f,‘EK[X]_,Xg,...,X,-,]
choose:  operational degree D € N How?
extend:  system A to the system
RP) = {xbt; =0:|b| <D —-2,¢; € A}
linearize:  consider x?, d < D a new variable, obtain linear system M
solve: linear system M

minimum degree Dy for reliable termination (Yang and Chen):
Do := min{D : ((1 = \)™ "1+ \)™[D] < 0}

Technis:
Eindho
/ department of mathematics and computer science T U/e University of Technology





System Solving — Extended Linearization

34/43

For b e N denote by x® the monomial xx2 ... xn and by

|b| = by + by + - - - + by, the total degree of xb.

given: finite field K = F,
system A of m multivariate quadratic equations:
61 252 =RLL =€m=0, f,‘EK[X]_,Xg,...,X,-,]
choose:  operational degree D € N How?
extend:  system A to the system
RP) = {xbt; =0:|b| <D —-2,¢; € A}
linearize:  consider x?, d < D a new variable, obtain linear system M
solve: linear system M How?

minimum degree Dy for reliable termination (Yang and Chen):
Do := min{D : ((1 = \)™ "1+ \)™[D] < 0}

Technis:
Eindho
/ department of mathematics and computer science T U/e University of Technology





System Solving — Extended Linearization

Solve the sparse linear system M:

0

750

1500

Rows

2250

3000

Use, e.g., the (block) Lanczos or the (block) Wiedemann algorithm.

=

0 750 1500

Columns

2250

3000

35/43
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System Solving — Brute Force

36/43

Grobner basis solvers and XL are efficient for solving multivariate
polynomial systems over /arge finite fields.

Technische Universiteit
. . T U e Eindhoven
/ department of mathematics and computer science University of Technology





System Solving — Brute Force

36/43

Grobner basis solvers and XL are efficient for solving multivariate
polynomial systems over /arge finite fields.

Most Efficient Algorithm for FF5:

Brute-force search, testing all 2" possible inputs.

/ department of mathematics and computer science





Exhaustive Search — Approach

Full-Evaluation Approach
» Evaluate the whole equation for each possible input.
> Time Complexity: O(2"n?)
> Memory Complexity: O(n)

T U Technis
Eindh
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Exhaustive Search — Approach

Full-Evaluation Approach

» Evaluate the whole equation for each possible input.
> Time Complexity: O(2"n?)
» Memory Complexity: O(n)

<

Gray-Code Approach

» Only re-compute those parts of the equation that have changed.

» Enumerate input vector in Gray-code order.

v

» Time Complexity: O(2"m)
> Memory Complexity: O(n?m)

Trade computation for memory.

Update solution using the derivatives of the involved variables.

\

/ department of mathematics and computer science
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Gray-Code Approach

k=01010p; 4 =0, x3 =1, % =0, x=1,x =0

f = xsxo + x3xg + Xox1 + x3 + x1 + xo + 1
f=00+1-0+0-1 +1+ 1+ 0 +1
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Gray-Code Approach

k=01010p; 4 =0, x3 =1, % =0, x=1,x =0

f = xsxo + x3xg + Xox1 + x3 + x1 + xo + 1
f=00+1-0+0-1+1+ 1+ 0 +1

k=0101p; x4 =0,x3 =1, % =0, x; = 1,

f = xaxo + x3xg + Xox1 + x3 + x1 + xo + 1
f=0-0+1-1+0-1+1+ 1+ 1 +1

TU Technische Un
/ department of mathematics and computer science e ik °v?v" f Technology





Gray-Code Approach

k=01010p; 4 =0, x3 =1, % =0, x=1,x =0

f = xux0 + x3x9g + Xox1 + x3 + x1 + xo + 1
f=00+1-0+0-1+1+ 1+ 0 +1

X =0, x3=1%=0x =1 x=1

f = xux0 + x3x9 + Xox1 + x3 + x1 + x9 + 1
f=00+1-14+0-1+1+ 1+ 1+1

f = x40 + x3x90 + Xox1 + x3 + x1 + xo + 1
f=0-1+1.0+1-0+1+ 0+ 0 +1
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Gray-Code Approach

k=01010p; 4 =0, x3 =1, % =0, x=1,x =0

f = xux0 + x3x9 + Xox1 + x3 + x1 + xp + 1
f=00+1-0+0-1+1+ 1+ 0 +1

k=01011p; =0, x3=1,%=0,x;=1,x =1

f = xux0 + x3x9 + Xox1 + x3 + x1 + x9 + 1
f=00+1-14+0-1+1+ 1+ 1+1

v

k = 01001, in Gray-code order

f = xx + x3xg + o1 + x3 + x1 + xo + 1
f=00+1-14+00+ 1 +0 4+ 1 +1

Techni
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Gray-Code Approach

k=01010p; 4 =0, x3 =1, % =0, x=1,x =0

f = xux0 + x3x9 + Xox1 + x3 + x1 + xp + 1
f=00+1-0+0-1+1+ 1+ 0 +1

X =0, x3=1%=0x =1 x=1

f = xuxo0 + x3x9 + X0x1 + x3 + x1 + x9p + 1
f=00+1-1+0-1+1+ 1+ 1+1

v

k = 01001, in Gray-code order

f = xx + x3xg + x0x1 + x3 + x1 + xo + 1
f=00+1-14+00+ 1 +0 4+ 1 +1
f = f(01011,) — 0-1 — 1 +0-0+4+0
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Gray-Code Approach

k=01010p; 4 =0, x3 =1, % =0, x=1,x =0

f = xux0 + x3x9 + Xox1 + x3 + x1 + xp + 1
f=00+1-0+0-1+1+ 1+ 0 +1

X =0, x3=1%=0x =1 x=1

f = xuxo0 + x3x9 + X0x1 + x3 + x1 + x9p + 1
f=00+1-1+0-1+1+ 1+ 1+1

k = 01001, in Gray-code order

= xux2 + X3xg + xox1 + x3 + x3 + x9g + 1
0.0 +1-1+0-0+ 1 +0+ 1 +1
f(01011,) — 0-1 — 1 +0-0 4+ 0
f(01011,) + 25(01001p)

T e N

Techni
Eindho
/ department of mathematics and computer science T U/e University of Technology





Exhaustive Search — Approach

Full-Evaluation Approach

» Evaluate the whole equation for each possible input.
> Time Complexity: O(2"n?)
» Memory Complexity: O(n)

<

Gray-Code Approach

» Only re-compute those parts of the equation that have changed.

» Enumerate input vector in Gray-code order.

v

» Time Complexity: O(2"m)
> Memory Complexity: O(n?m)

Trade computation for memory.

Update solution using the derivatives of the involved variables.

\
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Gray Code

Binary to Gray:
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6é» éév Céb
0 —0—= 00 —00—= 000
1|~1-+01 [—01— 001
1—11 |—11-=011
0—=10 ||[—10—010
10— 110

11— 111

01— 101

00— 100

(ctr >> 1) = ctr

ctr bin gray
0 | 0000 | 0000
1 | 0001 | 0001
2 | 0010 | 0011
3 | 0011 | 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 | 0111 | 0100
8 | 1000 | 1100
9 1001 1101
10 | 1010 1111
11 | 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000






Gray Code

Binary to Gray:
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6é» éév Céb
0 —0—= 00 —00—= 000
1|~1-+01 [—01— 001
1—11 |—11-=011
0—=10 ||[—10—010
10— 110

11— 111

01— 101

00— 100

(ctr >> 1) = ctr

ctr bin gray
0 | 0000 | 0000
1 | 0001 | 0001
2 | 0010 | 0011
3 | 0011 | 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 | 0111 | 0100
8 | 1000 | 1100
9 1001 1101
10 | 1010 1111
11 | 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000
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Binary to Gray:
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6é» éév Céb
0 —0—= 00 —00—= 000
1|~1-+01 [—01— 001
1—11 |—11-=011
0—=10 ||[—10—010
10— 110

11— 111

01— 101

00— 100

(ctr >> 1) = ctr

ctr bin gray
0 | 0000 | 0000
1 | 0001 | 0001
2 0010 0011
3 | 0011 | 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 | 0111 | 0100
8 | 1000 | 1100
9 1001 1101
10 | 1010 1111
11 | 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000






Gray Code

Binary to Gray:
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6é» éév Céb
0 —0—= 00 —00—= 000
1|~1-+01 [—01— 001
1—11 |—11-=011
0—=10 ||[—10—010
10— 110

11— 111

01— 101

00— 100

(ctr >> 1) = ctr

ctr bin gray
0 | 0000 | 0000
1 | 0001 | 0001
2 | 0010 | 0011
3 | 0011 | o010
4 0100 0110
5 0101 0111
6 0110 0101
7 | 0111 | 0100
8 | 1000 | 1100
9 1001 1101
10 | 1010 1111
11 | 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000






Gray Code

Binary to Gray:
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Q?» Qéb Céb
0 —0—= 00 —00—= 000
1|~1-+01 [—01— 001
1—11 |—11-=011
0—=10 ||[—10—010
10— 110

11— 111

01— 101

00— 100

(ctr >> 1) ~ ctr

ctr bin gray
0 | 0000 | 0000
1 | 0001 | 0001
2 | 0010 | 0011
3 | 0011 | 0010
4 0100 0110
5 0101 0111
6 | 0110 | 0101
7 | 0111 | 0100
8 | 1000 | 1100
9 1001 1101
10 | 1010 1111
11 | 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000






Gray Code

Binary to Gray:
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6é» Qé} Qéb
0 —0—= 00 —00—= 000
1|~1-+01 [—01— 001
1—11 |—11-=011
0—=10 ||[—10—010
10— 110

11— 111

01— 101

00— 100

(ctr >> 1) ~ ctr

ctr bin gray
0 0000 0000
1 | 0001 | 0001
2 0010 0011
3 | 0011 | 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 | 0111 | 0100
8 1000 1100
9 1001 1101
10 | 1010 1111
11 | 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000






Gray Code

Binary to Gray:
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o/’\/ o/’q, (\/”b
0 —0—= 00 —00—= 000
1|—1—01 |—01—=001
1—11 |—11-=011
0—=10 ||[—10—010
10— 110

11— 111

01— 101

00— 100

(ctr >> 1) ~ ctr

ctr bin gray
0 0000 0000
1 0001 0001
2 | 0010 | 0011
3 | 0011 | 0010
4 0100 0110
5 | 0101 | 0111
6 0110 0101
7 | 0111 | 0100
8 1000 1100
9 1001 1101
10 | 1010 1111
11 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000






Gray Code ctr | bin | gray
0 | 0000 | 0000

1 | 000t | o001

& 6%” Qéb 2 | 0010 | 0011
0 —0—= 00 —00—= 000 3| QUL 0010
1|—1--01 |701——001 S Rl
T — 11 ,:11—>m1 5 | 0101 | 0111

Store f(x) and update using g—)’;(X);

of ing <2of
store a_x,-(X) and update using o (x).
1 00— 100 10 1010 1111

11 | 1011 1110
12 | 1100 1010
13 | 1101 1011
14 | 1110 1001
15 | 1111 1000

Binary to Gray:
(ctr >> 1) = ctr

nnnnnnnn
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Gray-Code Algorithm

24: function EVAL(s)

25: while s.i < 2" do

26: S« s.i+1;

27: ki <« BlTl(S.i);

28: ko < B|T2(S.i);

20: if k valid then

30: s.d'[ki] « s.d'[ki] ® s.d"[ k1, ka];
31: end if

32: s.y <« s.y @s.d'[ki];

33: if s.y =0 then

34: return shr(s.i, 1) @ s.i;

35: end if

36: end while

37: end function )

Tech he Universiteit
, , TU /e i
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Parallelization

Fix i Variables for 2/ Parallel Instances:

f = xuxo + x3x9 + xox1 + x3 + x1 + x9 + 1

eg. i =2:

foo, = 0:x2 + 0:x + xox1 + 0 + x1 + xo + 1

f01b=0-X2+1-X0+X2X1+1+X1+X0+1

fio, = 1:x0 + 0:x + xox1 + 0 + x1 + xp + 1

fi1, 1. + 1-x9 + xox1 + 1 + x3 + x + 1
2/ independent equations (systems)
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Parallelization

Fix i Variables for 2/ Parallel Instances:

f = xuxo + x3x9 + xox1 + x3 + x1 + x9 + 1
eg. i =2:
foo, = 0:x20 + 0-x +|xoxi|+ 0 + x1 + xo + 1
f01b=0-X2+1-X0+X2X1+ 1 + x3 + x + 1
fio, = 1:x0 + 0:-x +|xoxi|+ 0 + x1 + xo + 1
fi1, 1-xo + 1-x9 +lxoxi|+ 1 + x3 + x + 1
2/ independent equations (systems)
sharing the same quadratic terms!
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System Solving — Brute Force

80-bit Security:

Solving a system of 80 variables
requires 1042 days on 65,536
Spartan-6 FPGAs at a total cost of
about US$40 million.
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